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The Analysis of Electron Pair Distribution 
Functions in Molecules 
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Electron pair distribution functions are analyzed for a variety of SCF+ CI 
wavefunctions, for a range of simple molecules. The statistical correlation be- 
tween electrons of like spin introduced by the antisymmetry requirement on the 
many-electron wavefunction is contrasted with the manner in which unlike- 
spin electron correlation is introduced through the inclusion of configuration 
interaction. 
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1. Introduction 

The single electron distribution function, or electron probability density, is the 
subject of a vast literature in quantum chemistry (see, for example, the recent review 
article by Bader [1]), and a text [2] is devoted entirely to electron density plots for 
wavefunctions of SCF type. Much less attention has been paid to the two-electron 
distribution function, and in particular to its components for pairs of electrons 
with like and unlike Z-components of spin angular momentum. The analysis of 
such distribution functions has been confined in the main to two-electron systems, 
where extremely accurate wavefunctions are available, with particular emphasis on 
the form of the Fermi [3-5] and Coulomb [6, 7] correlation holes. Similar calcula- 
tions are also available for the H 6 ring system [8] and for two-, three- and four- 
electron ions [9]. 

The present investigation is designed to study the behaviour of these pair distri- 
bution functions in many-electron systems, using the conventional approximation 
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of a single-determinant (SCF) wavefunction, supplemented by the inclusion of 
(extensive) configuration interaction. The information provided by such an 
analysis both reinforces and complements that available from an examination of 
the single electron distribution function [1] and from spatially-averaged expecta- 
tion values, particularly from well-studied one-electron properties such as dipole 
moment [10]. 

The manner in which Fermi and Coulomb correlation (for electrons of like and 
unlike spin, respectively) is introduced by the various approximations currently 
employed in quantum chemistry is fundamental to our understanding of the corre- 
lation problem itself, and may be instrumental in suggesting schemes for the con- 
struction of improved wavefunctions. It is well known [11] that statistical 
correlation between electrons of like spin is introduced at SCF level by the anti- 
symmetry requirement on the many-electron wavefunction, whereas such correla- 
tion is entirely lacking, at this level of approximation, for electrons of unlike spin. 

We shall study in this paper the pair distribution functions [12-14], for electrons 
of like and unlike spin components respectively, 

P~(r, r') = ( ~[ ~ '  6 ( r -  ri) 6 ( r ' -  r~)[�88 S~(ai)Sz(aj)] I ~P) (1) 
t ,J  

Pf(r ,  r') = ( 7/I ~ '  6(r - ri) 6(r' - r~)[�88 Sz(a i)Sz(aj)]l~/') (2) 
i , j  

for a range of SCF + CI calculations on some simple molecules. The prime on the 
double summation in Eqs. (1) and (2) indicates that the term i=j is to be excluded, 
and the formulae are valid only for singlet states, with S=Ms=O. Using the 
McWeeny normalization, N(N- 1), of the electron pair distribution function, P2, 
[12] we note that P~ and P~P will be normalized to (N/2)(N/2-1) and (N/2) 2 
respectively. 

Although it is customary [15, 16] to consider matrix representatives P2 of P2(r, r') 
within an orbital basis set (i.e. pair population analysis), we shall present our 
results in the form of pair probability densities for pairs of points r, r', thus per- 
mitting variations to the primitive orbital basis set. 

For a single determinant wavefunction, Eqs. (1) and (2) reduce to the simple forms 
[11, 12] 

p~rr 2, , r') =P~(r)P~(r')-IP~(r; r')[ 2 (3) 

P~P(r, r') = P~(r)P~(r') (4) 

where P~(r; r') is the spinless reduced one-electron density matrix, and Pa(r ) -  = 
Pl(r; r) is the electron probability density function. 

2. Computational Procedure 

The pair distribution functions P ~ -  ~r, r') and P~(r, r') have been calculated at 
selected pairs of points in the molecules CH4, NHa, H20 and HCN. The calcula- 
tions were performed using Dunning's contracted basis sets [17] (as derived from 
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the Huzinaga [18] 9s5p sets for C, N and O, and the 4s set for H) augmented by cer- 
tain polarization functions, (which allow a more flexible description of the effect of 
the molecular environment around each atomic centre) with values of exponents 
chosen from recent calculations in the literature (CH 4 [19], NH 3 [20], HzO [21]). 
The Dunning basis sets can be found in an Appendix to his paper [17]. 

Since many calculations in the literature can, for practical reasons, differ only in 
the number of contractions within a given set of Gaussian orbitals, the subsequent 
variations induced in P2(r, r') and its components are of some interest. It would, of 
course, be desirable to compare the results from calculations with distinct basis 
sets, but this is a computationally expensive procedure, since exponent optimiza- 
tion must first be performed. 

In view of the related nature of our basis sets, we shall employ the convenient short- 
hand notation s p d . . . / s p d . . . / . . ,  where each group refers to the number of con- 
tracted basis functions of s, p, d , . . .  symmetry respectively on a particular atom, 
and the groups refer to inequivalent atoms listed in order of decreasing atomic 
number, e.g. 421/2 for H20 refers to the contracted set of (4s-, 2p-, ld-) functions 
on C, and 2s-functions on H. The SCF calculations are routine [22, 23], the SCF+ 
CI calculations employ a previously-described [24] symbolic matrix element 
scheme involving spin-eigenfunctions, together with an efficient transformation 
package [25] for both matrix elements and distribution functions developed by 
one of the present authors (C.N.M.P.), and the computational details can be found 
elsewhere [26]. 

The CI calculations included all possible single excitations of the type (i) --* (u), and 
all double excitations of the type (i0 ---, (uu), together with a selection of configura- 
tions of types (ii')-~ (uu), (ii) ~ (uu'), (ii')---, (uu'), where i, i' refer to members of 
the set of occupied SCF orbitals, and u, u' refer to members of the corresponding 
set of virtual orbitals. This selection was carried out using the virtual orbital 
energies as a guide, such that, once all excitations of the type (i)--+ (u), ( i i ) ~  (uu) 
were included, all double excitations from the valence orbitals were incorporated 
up to and including some "terminal" virtual orbital, v, which could then be varied. 
This technique produces a large number of interacting configurations in general. 

3. Discussion of Results 

Although the pair distribution functions P~f and ~ were evaluated at selected 
pairs of points in a range of simple molecules, the observed trends were found to be 
similar in each case [26] and only one molecule will be considered here. We shall 
present a range of results for the aA 1 ground state, for C2~ symmetry, and equili- 
brium geometry [27], of the H20 molecule. 

Table 1 lists the various CI calculations, together with their energies, constituent 
basis sets, and number of configurations in the expansion. The various SCF 
energies are omitted since they can be inferred from the tabulated values of ECI and 
A E :  E C I -  Esc F . It should be noted that the configurations refer to eigenfunctions 
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Table 1. Data on CI calculations on H20 

I. L. Cooper and C. N. M. Pounder 

CI AE/hartree No. of No. of 
calculation Ect/hartree a (= E o -  Escv) Basis configurations interacting terms 

1 -76.134 -0.126 32/2 861 115171 
2 -76.146 -0.137 42/2 855 106540 
3 -76.193 -0.159 421/2 964 129746 
4 -76.208 -0.174 421/2 1201 195841 
5 -76.184 -0.150 421/2 1226 195341 
6 -76.205 -0.171 421/2 1249 229069 
7 -76.213 -0.179 421/2 1291 235144 
8 -76.198 -0.160 422/2 1295 239960 

aThe estimated Hartree-Fock limit is -76.067(5) hartree [28, 29]. 

of the operator S z, and hence the number of constituent determinants in the expan- 
sion is considerably greater than the listed number of configurations. 

The configurations were chosen as described in the previous section, except for 
CI5, which included every excitation type originating with the lal orbital (a "cut- 
off" virtual orbital, v, of slightly lower energy was necessary) and CI6, which in- 
volved the "frozen core" approximation, in which all excitations (single and 
double) from the laj orbital were excluded. 

The following points should be noted from Table 1 : 

a) For the calculations CI3, CI4 and CI7, with a fixed primitive SCF orbital basis, 
the energy decreases as the number of configurations increases. Calculation 
CI5 reflects energetically the increased number ofunfavourable excitations from 
the core orbital at the expense of the valence orbitals, while calculation CI6 (the 
"frozen-core" calculation) is distinguishable from CI4 by having a marginally 
higher energy for a larger number of configurations (and an accompanying 
larger number of interacting terms of the Hamiltonian matrix). 

b) Calculation CI8, which has a higher energy than calculations CI4, CI6 and CI7, 
reflects the extra computational effort (it contains the largest number of con- 
figurations) required to produce comparable energies when using a larger basis 
set. 

c) All calculations are below the Hartree-Fock limit [28, 29] recovering from be- 
tween 18~ (CI 1) to 40~ (CI7) of the correlation energy (of -0.370 hartree). 

For convenience in the discussion of the pair distribution functions, we include 
(Table 2) values of the electron probability density on the atomic centres for the 
various SCF and SCF + CI calculations. These values reproduce the familiar result 
that Pl(r) is adequately described at SCF level. The CI calculations 1-26] show that 
P1 (r) decreases from the corresponding SCF values in the bonding region, and this 
is in direct contrast to the effect on Pa (r) of including polarization functions to the 
basis at SCF level. This result indicates that the inclusion of even extensive con- 
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figuration interaction cannot compensate for the inadequacy of the basis set, and 
agrees with the conclusions of Green [10] based on dipole moment calculations. 

Table 3 lists some values of P~(r, r') for both the SCF and SCF + CI calculations. 
The SCF values, in accord with Eq. (4), are simply products of the values o f  the 
electron probability density at the points concerned, since electrons of unlike spin 
are statistically uncorrelated at SCF level. A direct consequence of this result is that 
the probability density of observing simultaneously two electrons at two points 
related to each other by symmetry is identical to the corresponding probability 
density for two electrons of opposite spin at either point. This is borne out in 
Table 3 by the equality of the SCF values of Uz~(rn, rH) and P~P(rH, rw). Note that 
this effect disappears on performing the CI calculations when P~P(rn, rn) is reduced 
considerably from its SCF value, whereas P~P(rn, rw) is virtually unchanged. 

Although P~(r, r) is relatively unaffected by change of basis at SCF level (in line 
with variations in Pl(r) - see Eq. (4)) there is a marked variation in values of 
P~(r, r) for different basis sets (excluding CI6, which will be discussed below). We 
see in general that the statistical correlation introduced by the inclusion of con- 
figuration interaction, for electrons of unlike spin, decreases as the size of the basis 
increases, since the values of P~(r, r) increase. We note in particular that, for the 
421/2 basis, CI4 and CI7 give almost identical results for P~O(ro, ro) , despite the 
fact that there is a considerable disparity in the number of configurations (cf. 
Table 1). This suggests that the amount of Coulomb correlation introduced by the 
method of configuration interaction is basis-set dependent, decreasing as the size of 
the basis set increases. 

a )  SCF values 

Basis Pl(ro) PI(rH) 

32/2 295.135 0.4132 
42/2 295.051 0.4147 

421/2- 294.925 0.3967 
422/2 294.925 0.3967 

Table 2. Values of Pl(r) /ao ~ at selected points in H20 

b) CI values 

CI 
calculation Pl(ro) PI(rH) 

1 295.149 0.4208 
2 295.208 0.4220 
3 294.998 0.4002 
4 295.025 0.4029 
5 295.024 0.4027 
6 294.960 0.4028 
7 295.034 0.4028 
8 295.082 0.4103 
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Table 3. Values of P~P(r, r')/ao 6 at selected pairs of points in H20 

a) SCF Values 

Basis P~P(ro, ro) P~a(ro, r n) P~P(rn, r n) P~a(rn, rn,) 

32/2 21776.19 30.488 0.0427 0.0427 
42/2 21763.74 30.586 0.0430 0.0430 

421/2 21745.12 29.318 0.0396 0.0396 
422/2 21745.12 29.318 0.0395 0.0395 

b) CI values 

CI 
calculation P~P(ro, ro) P~P(ro, rH) P~(r~,r a) P~(ra, rn,) 

1 20255.55 31,127 0.0195 0.0428 
2 20404.75 31.224 0.0199 0.0431 
3 20638.18 29.537 0.0256 0.0397 
4 20647.91 29.767 0.0217 0.0403 
5 20641.94 29,747 0,0205 0.0414 
6 21745.09 29.758 0.0205 0.0404 
7 20649.74 29.764 0.0206 0.0404 
8 20822.47 30.305 0.0233 0.0440 

Calculation CI6, which corresponds to the "frozen-core" approximation, shows 
no Coulomb correlation whatsoever at the oxygen atom, in that P~P(r o, ro) is 
unchanged from its SCF value, although the total energy of this calculation is com- 
parable with that of the other calculations using this basis set (see Table 1). This 
result simply shows that all the correlation effects on the oxygen are attributable to 
the lal  orbital, and for a given size of basis, P~P(ro, ro) is relatively insensitive to 
the particular choice of configurations provided all single and double excitations of 
the type (i)-+ (u), (ii)---, (uu) respectively are included. It is of interest to note that 
Rosenberg and Shavitt [30] found that the "frozen-core" approximation had only 
a slight effect on expectation values, whereas in a related [-31] paper on potential 
energy surfaces, they found that the "frozen core" approximation could signifi- 
cantly affect the quartic potential coefficients, and did not include a "frozen core" 
in their final CI calculations. 

It is apparent from this work that the major effect of the "frozen core" approxi- 
mation (apart from the reduction i n computational effort required in the calcula- 
tion) is an inadequate description of  Coulomb correlation in the vicnity of the 
heavy atom, and, although it does not show up in the calculation of the usual 
expectation values, it is a serious deficiency in what would otherwise be a reason- 
ably accurate wavefunction. 

At large separations of r and r', we note from Table 3 that the CI values of 
P~(r, r') are only slightly ( ~ 2-3~o) increased from the corresponding SCF values. 
This is to be expected since P~P has a constant normalization in both cases, and the 



Electron Pair Distribution Functions in Molecules 57 

Table 4. Values of P~(r, r')/a o 6 at selected pairs of points in HzO ~ 

a) SCF values 

Basis P~(ro, rn) Pj~(rn, rw) 

32/2 30.362 0.0414 
42/2 30.459 0.0417 

421/2 29.19l 0.0389 
422/2 29.191 0.0389 

b) CI values 

CI ~ ( r o ,  rH) P~(rH, rn, ) 

1 30.967 0.0418 
2 31.040 0.0421 
3 29.393 0.0391 
4 29.588 0.0422 
5 29.577 0.0424 
6 29.581 0.0421 
7 29.589 0.0421 
8 30.163 0.0449 

~ ( r ,  r)~-0 (cf. Eq. (3)) 

effect of configuration interaction is generally to significantly reduce the values of 
P~r r' = r), so that P~r r') must increase slightly for r r r' to preserve normaliza- 
tion. 

Table 4 lists certain values of P~(r, r ') for both SCF and SCF § CI calculations and 
we note that, while P~r2 t , r' = r) -= 0 (by Eq. (3)), the values of P~r2 ~ , r') are only 
marginally changed from their SCF values, indicating that the additional correla- 
tion introduced by configuration interaction over and above the statistical cor- 
relation introduced by antisymmetrization at SCF level is negligible for most 
separations of r and r' (and is, of course, zero for r :  r'). 

A comparison of Tables 3 and 4 shows that the SCF values ofP~(r ,  r') are con- 
sistently smaller than the corresponding values of P~P(r, r') and this follows 
naturally from Eq. (3), in which the positive "interference" term IP~(r; r')l 2 is 
subtracted from the term P~(r)P~(r') (--P~(r)P~(r')=P~P(r, r') in the present 
instance). 

4. Conclusions 

Our analysis of the pair distribution functions P~(r, r') and P~(r, r') in many- 
electron systems has provided a detailed breakdown of correlation effects which is 
not ascertainable directly from an analysis of spatially-averaged expectation 
values. In particular, we have shown that the absolute values of P~(r, r) are deter- 
mined primarily by the basis set, the amount of Coulomb correlation introduced by 
configuration interaction decreasing with increasing size of basis set, for calculations 
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of comparable size. The use of the "frozen-core" approximation is such as to 
inhibit completely the effect of Coulomb correlation at the heavy atom. 

The behaviour Of short-range correlation effects (Fermi and Coulomb correlation 
holes) around a reference point has only been referred to briefly here, and will be 
one subject of a separate analysis [32]. The present analysis, however, has done 
much to show that the behaviour of the pair distribution functions P~(r, r') and 
P~P(r, r') has an important role to play in the detailed analysis of many-electron 
wavefunctions in molecules 
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